Quantile regression with multiple independent variables

نویسندگان

  • P. S. Fischbeck
  • F. Hoss
چکیده

Introduction Conclusions References Tables Figures Back Close Full Screen / Esc Abstract Introduction Conclusions References Tables Figures Back Close Full Screen / Esc Abstract This study further develops the method of quantile regression (QR) to predict exceedance probabilities of flood stages by post-processing forecasts. Using data from the 82 river gages, for which the National Weather Service's North Central River Forecast Center issues forecasts daily, this is the first QR application to US 5 American river gages. Archived forecasts for lead times up to six days from 2001– 2013 were analyzed. Earlier implementations of QR used the forecast itself as the only independent variable (Weerts et al., 2011; López López et al., 2014). This study adds the rise rate of the river stage in the last 24 and 48 h and the forecast error 24 and 48 h ago to the QR model. Including those four variables significantly improved the 10 forecasts, as measured by the Brier Skill Score (BSS). Mainly, the resolution increases, as the original QR implementation already delivered high reliability. Combining the forecast with the other four variables results in much less favorable BSSs. Lastly, the forecast performance does not depend on the size of the training dataset, but on the year, the river gage, lead time and event threshold that are being forecast. We find that 15 each event threshold requires a separate model configuration or at least calibration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instrumental Variable Quantile Regression * †

Quantile regression is an increasingly important tool that estimates the conditional quantiles of a response Y given a vector of regressors D. It usefully generalizes Laplace’s median regression and can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. For the linear quantile model defined by Y = D′γ(U) where D′γ(U) is s...

متن کامل

Analysis of the Influence of Quantile Regression Model on Mainland Tourists' Service Satisfaction Performance

It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a qu...

متن کامل

A New Framework for Estimation of Quantile Treatment Effects: Nonseparable Disturbance in the Presence of Covariates

This paper introduces a new framework for quantile estimation. Quantile regression techniques have proven to be extremely valuable in understanding the relationship between explanatory variables and the conditional distribution of the outcome variable. Quantile regression allows the effect of the explanatory variables to vary based on a nonseparable disturbance term, frequently interpreted as “...

متن کامل

Model selection in quantile regression models

Lasso methods are regularization and shrinkage methods widely used for subset selection and estimation in regression problems. From a Bayesian perspective, the Lasso-type estimate can be viewed as a Bayesian posterior mode when specifying independent Laplace prior distributions for the coefficients of independent variables (Park and Casella, 2008). A scale mixture of normal priors can also prov...

متن کامل

Behavior of Lasso Quantile Regression with Small Sample Sizes

Quantile regression is a statistical technique intended to estimate, and conduct inference about the conditional quantile functions. Just as the classical linear regression methods estimate models for conditional mean function, quantile regression offers a mechanism for estimating models for conditional median function, and the full range of other conditional quantile functions. In this paper d...

متن کامل

Quantile Regression Estimates for a Class of Linear and Partially Linear Errors-in-variables Models

We consider the problem of estimating quantile regression coefficients in errors-in-variables models. When the error variables for both the response and the manifest variables have a joint distribution that is spherically symmetric but is otherwise unknown, the regression quantile estimates based on orthogonal residuals are shown to be consistent and asymptotically normal. We also extend the wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014